Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
GEOSPATIAL TECHNOLOGY AND SMART CITIES: ICT, Geoscience Modeling, GIS and Remote Sensing ; : 167-185, 2021.
Article in English | Web of Science | ID: covidwho-1995268

ABSTRACT

This study is the first work in implementing four-dimensional (4-D) hologram interferometry to simulate COVID-19 rate variations in slums using microwave remote sensing technology. The study also proposed a new mathematical formula to simulate the rate of COVID-19 from 4-D hologram interferometry;termed as Marghany's 4-D hologram SAR interferometry. The most critical challenge of the world is pandemic COVID-19;which is spreading widely across slums. Slums are considered the main source of criminals and diseases owing to lack of perfect housing, unsanitary conditions, poor infrastructures and occupancy security. The meagre in the impenetrable urban slums are the furthermost susceptible to impurity because of (i) scarce and delimited admission to wellbeing drinking water and satisfactory extents of water for individual sanitation;(ii) the absence of elimination and handling of an excretory product;and (iii) the lack of removal of solid waste. In this view, urban slum requires the standard and accurate method to be identified automatically from remote sensing data. In this context, a remote sensing technique plays a tremendous role in monitoring land use spatial variations. The data are used that involved historical three Sentinel-1A data. The consequences present that the hologram Interferometric technique is being an admirable device for a disordered urban slum in place of it can differentiate between them from its adjacent setting. Reconstruction of a 4-D urban slum is delivered by hologram Interferometric phase unwrapping based on Particle Swarm Optimization (PSO), besides historical time variations of COVID-19 are allied with slum. Hologram interferometric reveals a countless imbrication of COVID percentage rate of 1.2% between high-class zone with the urban slum. The consequences disclose that urban slums, road networks, and infrastructures are effortlessly categorized. In conclusion, the hologram Interferometric based on Particle Swarm Optimization (PSO) is an appropriate algorithm for chaotic 4-D urban slum automatic detection in Sentinel-1A.

2.
Medicina (Kaunas) ; 58(4)2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1776284

ABSTRACT

The concept of minimally invasive spine therapy (MIST) has been proposed as a treatment strategy to reduce the need for overall patient care, including not only minimally invasive spine surgery (MISS) but also conservative treatment and rehabilitation. To maximize the effectiveness of patient care in spine surgery, the educational needs of medical students, residents, and patient rehabilitation can be enhanced by digital transformation (DX), including virtual reality (VR), augmented reality (AR), mixed reality (MR), and extended reality (XR), three-dimensional (3D) medical images and holograms; wearable sensors, high-performance video cameras, fifth-generation wireless system (5G) and wireless fidelity (Wi-Fi), artificial intelligence, and head-mounted displays (HMDs). Furthermore, to comply with the guidelines for social distancing due to the unexpected COVID-19 pandemic, the use of DX to maintain healthcare and education is becoming more innovative than ever before. In medical education, with the evolution of science and technology, it has become mandatory to provide a highly interactive educational environment and experience using DX technology for residents and medical students, known as digital natives. This study describes an approach to pre- and intraoperative medical education and postoperative rehabilitation using DX in the field of spine surgery that was implemented during the COVID-19 pandemic and will be utilized thereafter.


Subject(s)
Augmented Reality , COVID-19 , Education, Medical , Artificial Intelligence , Education, Medical/methods , Humans , Pandemics
3.
7th International Conference on Advances in Visual Informatics, IVIC 2021 ; 13051 LNCS:98-110, 2021.
Article in English | Scopus | ID: covidwho-1565271

ABSTRACT

The Malaysian Education System have recently implemented the home-based teaching and learning or Pengajaran dan Pembelajaran di Rumah (PdPR) classes due to the outbreak of the pandemic COVID19. Since students were not able to go to schools during the lockdown period, teachers and parents have resorted to creating various methods to engage students in their learning process. Multi-touch technology on tablet appears as a promising tool in visual learning especially during this pandemic out-break. This paper presents a preliminary study conducted on a research project in developing a Visual Learning Application for Mathematics using Holographic Display for the topic on Shape and Space based on Multi-Touch Technology called MEL-VIS. A preliminary study was conducted on fifteen (15) primary school teachers. The results of the preliminary study showed that the topic on Shape and Space is a topic that most students had major problems when learning Mathematics at three (3) primary schools. Students were found to have difficulty in understanding the concepts being taught due to factors such as: ive phenomena and concepts;as well as possessing low imagination. © 2021, Springer Nature Switzerland AG.

4.
J Med Internet Res ; 23(9): e24081, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1403378

ABSTRACT

BACKGROUND: The COVID-19 outbreak has now become a pandemic and has had a serious adverse impact on global public health. The effect of COVID-19 on the lungs can be determined through 2D computed tomography (CT) imaging, which requires a high level of spatial imagination on the part of the medical provider. OBJECTIVE: The purpose of this study is to determine whether viewing a 3D hologram with mixed reality techniques can improve medical professionals' understanding of the pulmonary lesions caused by COVID-19. METHODS: The study involved 60 participants, including 20 radiologists, 20 surgeons, and 20 medical students. Each of the three groups was randomly divided into two groups, either the 2D CT group (n=30; mean age 29 years [range 19-38 years]; males=20) or the 3D holographic group (n=30; mean age 30 years [range 20=38 years]; males=20). The two groups completed the same task, which involved identifying lung lesions caused by COVID-19 for 6 cases using a 2D CT or 3D hologram. Finally, an independent radiology professor rated the participants' performance (out of 100). All participants in two groups completed a Likert scale questionnaire regarding the educational utility and efficiency of 3D holograms. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed by all participants. RESULTS: The mean task score of the 3D hologram group (mean 91.98, SD 2.45) was significantly higher than that of the 2D CT group (mean 74.09, SD 7.59; P<.001). With the help of 3D holograms, surgeons and medical students achieved the same score as radiologists and made obvious progress in identifying pulmonary lesions caused by COVID-19. The Likert scale questionnaire results showed that the 3D hologram group had superior results compared to the 2D CT group (teaching: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; understanding and communicating: 2D CT group median 1, IQR 1-1 versus 3D group median 5, IQR 5-5; P<.001; increasing interest: 2D CT group median 2, IQR 2-2 versus 3D group median 5, IQR 5-5; P<.001; lowering the learning curve: 2D CT group median 2, IQR 1-2 versus 3D group median 4, IQR 4-5; P<.001; spatial awareness: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; learning: 2D CT group median 3, IQR 2-3 versus 3D group median 5, IQR 5-5; P<.001). The 3D group scored significantly lower than the 2D CT group for the "mental," "temporal," "performance," and "frustration" subscales on the NASA-TLX. CONCLUSIONS: A 3D hologram with mixed reality techniques can be used to help medical professionals, especially medical students and newly hired doctors, better identify pulmonary lesions caused by COVID-19. It can be used in medical education to improve spatial awareness, increase interest, improve understandability, and lower the learning curve. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100045845; http://www.chictr.org.cn/showprojen.aspx?proj=125761.


Subject(s)
Augmented Reality , COVID-19 , Students, Medical , Adult , Humans , Lung , Male , SARS-CoV-2 , United States , Young Adult
5.
Front Surg ; 8: 657901, 2021.
Article in English | MEDLINE | ID: covidwho-1190357

ABSTRACT

Background: While performing surgeries in the OR, surgeons and assistants often need to access several information regarding surgical planning and/or procedures related to the surgery itself, or the accessory equipment to perform certain operations. The accessibility of this information often relies on the physical presence of technical and medical specialists in the OR, which is increasingly difficult due to the number of limitations imposed by the COVID emergency to avoid overcrowded environments or external personnel. Here, we analyze several scenarios where we equipped OR personnel with augmented reality (AR) glasses, allowing a remote specialist to guide OR operations through voice and ad-hoc visuals, superimposed to the field of view of the operator wearing them. Methods: This study is a preliminary case series of prospective collected data about the use of AR-assistance in spine surgery from January to July 2020. The technology has been used on a cohort of 12 patients affected by degenerative lumbar spine disease with lumbar sciatica co-morbidities. Surgeons and OR specialists were equipped with AR devices, customized with P2P videoconference commercial apps, or customized holographic apps. The devices were tested during surgeries for lumbar arthrodesis in a multicenter experience involving author's Institutions. Findings: A total number of 12 lumbar arthrodesis have been performed while using the described AR technology, with application spanning from telementoring (3), teaching (2), surgical planning superimposition and interaction with the hologram using a custom application for Microsoft hololens (1). Surgeons wearing the AR goggles reported a positive feedback as for the ergonomy, wearability and comfort during the procedure; being able to visualize a 3D reconstruction during surgery was perceived as a straightforward benefit, allowing to speed-up procedures, thus limiting post-operational complications. The possibility of remotely interacting with a specialist on the glasses was a potent added value during COVID emergency, due to limited access of non-resident personnel in the OR. Interpretation: By allowing surgeons to overlay digital medical content on actual surroundings, augmented reality surgery can be exploited easily in multiple scenarios by adapting commercially available or custom-made apps to several use cases. The possibility to observe directly the operatory theater through the eyes of the surgeon might be a game-changer, giving the chance to unexperienced surgeons to be virtually at the site of the operation, or allowing a remote experienced operator to guide wisely the unexperienced surgeon during a procedure.

SELECTION OF CITATIONS
SEARCH DETAIL